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Explicit Analytic Solutions of Classical Scalar
Field Cosmology
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A class of explicit and exact solutions is obtained for the equations governing
the evolution of spatially flat FLRW spacetimes in interaction with a classical
massive scalar field in the presence of conformal coupling and of a quartic self-
interaction potential. These solutions only exist for nonvanishing cosmological
constant. The equation of state is calculated self-consistently.

1. INTRODUCTION

Two years ago we started a study of the dynamical behavior of a spatially
flat FLRW spacetime in interaction with a classical massive scalar field with
conformal coupling to gravity.

As a first step, we applied new mathematical methods developed in our
group for finding first integrals and constants of motion (invariants) of the
coupled set of the Einstein and Klein–Gordon equations with a quartic self-
interaction potential for the massive scalar field in the presence of a cosmolog-
ical constant. This led us quite unexpectedly to find explicit analytical solu-
tions in six cases corresponding to particular relationships between the
physical parameters of the theory: the mass m of the scalar field, the quartic
self-interaction coupling constant V , and the cosmological constant L.
Among these solutions, as we show later in this article, some are of real
physical interest. In spite of their interest these solutions are not generic,
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being limited by specific constraints on the parameters and to certain sets of
initial conditions. However, a few months later we discovered a much stronger
result: for any values of these parameters, the phase space of the above set
of differential equations reduces to a two-dimensional manifold embedded
in a three-dimensional phase space {c, ċ, H}, where c is the scalar field,
ċ is its time derivative, and H is the Hubble function. This theorem generically
excludes any chaotic behavior for the cosmological histories of the spatially
flat FLRW universe in the presence of this potential [1].

The power of that result was reinforced when we finally discovered that
its validity is extended to any form of the self-interacting potential of the
scalar field and to any value of the nonminimal coupling constant [2]. The
only limitation of the no-chaos theorem was the spatial flatness of the FLRW
universes considered.

The topology of the two-dimensional manifold to which the dynamics
of these universes are restricted is rather complex. Depending on the values
of parameters related to the mass of the scalar field, the functional form of
the self-interaction potential and the cosmological constant, holes may appear
in that manifold, corresponding to forbidden regions in the phase space. The
phase portrait of the dynamical system is strongly influenced by the presence
of these holes. The complex nature of the topology could be the cause of
the apparent chaotic behavior observed in the numerical solutions for that
system. Indeed, numerical integration introduces errors due to the discretiza-
tion of the time derivative and to the approximation of real numbers by
floating point numbers. The latter implies that initial conditions almost never
(in the sense of measure) lie on the permitted manifold, whereas the discretiza-
tion implies a drastic change in the dynamics which is replaced by a system of
finite-difference nonlinear equations. Such equations generally have chaotic
solutions that are highly sensitive to small variations in the initial conditions.
Hence, from any initial point which is not exactly on the allowed two-
dimensional manifold, albeit infinitesimally close to it, a solution will emerge
whose distance from that manifold grows exponentially.

Our purpose in this article is not to present these generic properties,
which have been the subject of detailed publications [1, 2], but rather to
expose the more particular but explicit and analytic solutions obtained in the
first part of our work. Although restricted to a specific form of the self-
interaction potential, to the particular (conformal) value 1/6 of the nonminimal
coupling constant between the scalar field and gravity, and to particular
relations between the remaining parameters, we think that these exact solu-
tions of the self-consistent cosmological equations are of physical relevance.

The article begins with a mathematical section describing a method for
finding invariants based on a general theory of nonlinear ODEs that we have
been developing over the past few years [3–14]. In the next section, we
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briefly present the self-consistent cosmological equations that we are solving
and their context; finally, the six types of solutions obtained and their proper-
ties are described.

2. QUASI-MONOMIAL APPROACH TO ODEs AND
INVARIANTS

2.1. General Framework

We give here a short presentation of a theory of ordinary differential
equations (ODEs) that addresses the large class of equations that can be
reduced to the standard form [3–14]

Ẋi 5 Xi o
m

j51
Aij &

n

k51
X Bjk

k (i 5 1, . . . , n) (2.1)

where the numbers Aij and Bjk are real or complex and constant. The symbol
Ẋi denotes the time derivative of Xi. The integer m is the number of monomials,
or more precisely, of quasi-monomials (since the numbers Bjk are not necessar-
ily integers) Pn

k51 X Bjk
k appearing in the system (2.1). In particular, the class

of systems of type (2.1) includes all the equations with polynomial right-
hand side. The factor Xi appearing in the right-hand side of equation (2.1)
is extracted from the general quasi-polynomial in order to define the logarith-
mic time derivative of Xi (t). Systems of the form (2.1) are by no means
restricted to (quasi-)polynomial nonlinearities. Indeed, it is shown below that
most systems of ODEs with right-hand sides including more general functions
can be exactly reduced to the form (2.1) by changes of variables and appro-
priate embeddings. Hence, the class of equations (2.1) involves most of the
ODEs of interest in physics.

The form (2.1) represents a class of ODEs in a notation that highlights
two mathematical objects: the rectangular matrices A(n 3 m) and B(m 3 n).
That these objects are more than a mere notation appears through the invari-
ance in form of Eq. (2.1) under the so-called quasi-monomial (QM)
transformations

Yi 5 &
n

j51
X Cij

j (2.2)

where C is an invertible n 3 n matrix. This property shown in the next
paragraphs provides a decomposition of the set of equations (2.1) in equiva-
lence classes. Moreover, as we will see, in each equivalence class a canonical
representative exists in the form of a Lotka–Volterra (LV) equation [15]
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Ẏi 5 Yt o
m

j51
MijYj (i 5 1, . . . , m) (2.3)

with

M 5 B ? A

This canonical LV equation is the basic tenet of many of the results
obtained. Among these we were able to obtain an analytic expression for the
general term of the Taylor expansion of the general solution Yi (t) for the
initial condition problem of Eq. (2.3) [5]. The analytic form of the Poincaré
normalizing series was also derived [13]; this series can then be transformed
in terms of the original variables xi of Eq. (2.1) and also allows one to use
resummation techniques, and hence leads to new and efficient methods of
solving systems of nonlinear ODEs. In the following we do not detail these
properties, but we rather focus on another category of results obtained via
Eq. (2.3). The latter are methods for finding quasi-polynomial invariants or
Lie symmetries, the common feature of these results being the reduction of
the dimension of the system of ODEs [8, 9].

Before entering into the details of the quasi-monomial theory of ODEs
we discuss general aspects of the notion of integrability. This is a rather elusive
notion associated with the possibility of obtaining closed-form solutions for
a given system of ODEs or, more generally, of reducing the dimension of
that system. Integrability is also associated with the notion of “regularity”
of the solutions in the sense that these are monotonic, periodic, or quasi-
periodic functions of time. This excludes chaotic solutions which are more
irregular functions of time and which possess the property of instability with
respect to small variations of the initial conditions.

More precisely, a dynamical system of dimension n, i.e., a set of n
autonomous ordinary differential equations of the first order

ẋi 5 fi (x1, . . . , xn) (i 5 1, 2, . . . , n) (2.4)

is said to be integrable if it possesses n 2 1 analytic constants of motion or
invariants. These are functions Ii (xi , . . . , xn) of the dependent variables Xi (t)
that remain constant along any trajectory which is a solution of the system
(2.4). Each of these invariants allows for the elimination of one dependent
variable in terms of the n 2 1 remaining ones. Hence, if n 2 1 such functions
Ii are known, one obtains a system

I1(x1(t), . . . , xn(t)) 5 Ci

: (2.5)

In21 (x1(t), . . . , xn(t)) 5 Cn21

where the constants Ci are given by
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C1 [ I1(x1(0), . . . , xn(0))

: (2.6)

Cn21 [ In21(x1(0), . . . , xn(0))

Thus, if the system (2.5) is invertible, one can express n 2 1 of the xi in
terms of one of them; this invertibility property implies of course certain
regularity properties of the functions Ii. The reduction leads then to only one
differential equation, which in turn can be integrated by quadrature.

The above considerations could appear at first sight as a clear definition
of integrability; however, some caution should be taken. Indeed, when an
algorithm for finding such invariants is designed, the set of functions in terms
of which these invariants are constructed has to be made precise. One can
look, e.g., for polynomial invariants, or one may try to find invariants in a
larger class of functions, such as the rational or the analytic functions of x1,
. . . , xn. In fact, one may look for invariants in successive algebraic extensions
of the polynomial functional set; this raises two questions. The first one is
about the nature of the maximal algebraic extension of the function ring in
which to look for invariants and about its relationship with the chaotic or
regular nature of the solutions. The second question is a decidability issue:
a given dynamical system may admit invariants of various functional forms.
Hence, the fact that a system does not possess any invariant of a given form
does not mean that one can decide whether it is integrable or chaotic.

An example is the well-known Lotka–Volterra predator–prey system

ẋ 5 ax 2 bxy (2.7)

ẏ 5 2gy 1 dxy

where a, b, g, and d are positive real constants. For most values of these
parameters, this system does not admit any polynomial or quasi-polynomial
invariant. However, for any value of the parameters, it admits an invariant
belonging to the Liouville ring of functions (which include rational functions
and logarithms),

I(x, y) 5 g log x 2 dx 1 a log y 2 by (2.8)

That this is an invariant can easily be checked by computing dI/dt modulo
the system (2.7).

This example clearly shows that without knowing the maximal extension
ring of functions in which to look for invariants of a given system, no
finite algorithm can be constructed in order to decide whether that system
is integrable. Although algorithms such as the Painlevé test [16, 17] exist,
they are limited to the status of mere conjectures.
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2.2. Quasi-Polynomial Equations

Let us define the class of quasi-polynomial differential equations on Rn

or Cn as

ẋi 5 xi o
m

j51
Aij &

n

k51
x Bjk

k (i 5 1, . . . , n) (2.9)

A and B in Eq. (2.9) are real or complex constant rectangular matrices. The
number m is related to the number of quasi-monomials appearing in the
vector field of Eq. (2.9), and generally m is different from n.

As said above, many systems which are not in the quasi-polynomial
form (2.9) can be recast in this form; the subject was studied exhaustively
in refs. 8 and 9. Here, we present simple examples in order to clarify the
procedure that reduces non-quasi-polynomial systems to the quasi-polyno-
mial form.

Example 1 (Van der Pol and Duffing equations). Let us consider the
equation

ẍ 2 aẋ 2 bx 2ẋ 2 gx 2 dx 3 5 % cos(t) (2.10)

which includes the cases of the forced Van der Pol and Duffing oscillators.
First, we transform Eq. (2.10) into a first-order system; we define new
variables x1 5 x and x2 5 ẋ and obtain

ẋ1 5 x2

ẋ2 5 ax2 1 bx1
2x2 1 gx1 1 dx1

3 1 % cos(t) (2.11)

In order to have an autonomous system, one introduces the additional variables
x3 5 cos(t) and x4 5 sin(t), obtaining the quasi-polynomial system

ẋ1 5 x2

ẋ2 5 ax2 1 bx1
2 x2 1 gx1 1 dx1

3 1 %x3

ẋ3 5 2x4

ẋ4 5 x3 (2.12)

The system is finally recast in the form (2.9),

ẋ1 5 x1(x2 x21
1 )

ẋ2 5 x2(a 1 bx1
2 1 gx1 x21

2 1 dx1
3x21

2 1 %x3 x21
2 )

ẋ3 5 x3(2x4 x21
3 )
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ẋ4 5 x4(x3 x21
4 ) (2.13)

By ordering the quasi-monomials which appear on the right-hand side as

y1 5 1, y2 5 x2 x21
1 , y3 5 x1

2

y4 5 x1 x21
2 , y5 5 x1

3x21
2 , y6 5 x3 x21

2

y7 5 x4 x21
3 , y8 5 x3 x21

4 (2.14)

we obtain the matrices B and A defined in Eq. (2.9),

B 5 1
0 0 0 0

21 1 0 0
2 0 0 0
1 21 0 0
3 21 0 0
0 21 1 0
0 0 21 1
0 0 1 21

2,

(2.15)

A 5 1
0 1 0 0 0 0 0 0
a 0 b g d % 0 0
0 0 0 0 0 21 0 0
0 0 0 0 0 0 0 1

2
The case in which there is no external periodic force is given by Eq. (2.11)
with % 5 0. Then, if we consider the order of the quasi-monomials in (2.14),
we have

B 5 1
0 0

21 1
2 0
1 21
3 21

2, A 5 10 1 0 0 0
a 0 b g d2 (2.16)

Example 2. As a second example, let us consider a model which describes
the oscillation in time of the concentration of electron-hole pairs (x1) and
excitons (x2) in an intrinsic semiconductor. If the higher order kinetics is
allowed in the model, the process is described by the equations

ẋ1 5 g 2 cx1
2x2

ẋ2 5 cx1
2x2 2

kx2

(1 1 qx2)m (2.17)

where g, c, and k are defined in the process consisting of the following steps:
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• Photogeneration of carriers: g →g
e 1 h

• Stimulated production of excitons: e 1 h 1 x2 →c
2x2

• Radiative decay of excitons: x2 →k
g

The system (2.16) can be put in the quasi-polynomial form (2.9) if we
introduce the variable x3 5 (1 1 qx2)21:

ẋ1 5 x1(gx21
1 2 cx1 x2)

ẋ2 5 x2(cx1
2 2 kx3

m)

ẋ3 5 x3(2cqx1
2x2x3 1 qkx2 xm11

3 ) (2.18)

The matrices B and A are then

B 5 1
21 0 0

1 1 0
2 0 0
0 0 m
2 1 1
0 1 m 1 1

2, A 5 1
g 2c 0 0 0 0
0 0 c 2k 0 0
0 0 0 0 2cq qk2

(2.19)

More generally, a systematic method for recasting a general class of differen-
tial equations into the quasi-polynomial form is given by the following propo-
sition [8, 9].

Proposition 2.1. Let us consider a dynamical system of the general form

ẋi 5 o
Ni

j51
Dj &

n

k51
x Ejk

k &
p

k51
fk(x)Fjk (i 5 1, . . . , n)

where Ejk, Fjk, Dj P R and fk: Rn → R are functions with partial derivatives
which can be expressed in the form

fl

xi
5 o

Mi

j51
Gil

j &
n

k51
x Hjk

k &
q

k51
fk(x)Kjk (i 5 1, . . . , n; l 5 1, . . . , p)

with Gil
j , Hjk, Kjk P R. Let us consider the variables

yrs 5 f ars
r &

n

k51
x brsk

k ars Þ 0 (s 5 1, . . . , lr)

Then the dynamical system of equations for the variables xi and yrs is a quasi-
polynomial dynamical system.
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By using this proposition one can see that many different quasi-polyno-
mial representations can exist for a given dynamical system. A relevant
question is: what is the quasipolynomial representation with the smallest
number of quasi-monomials? In refs. 8 and 9 this issue is analyzed exhaus-
tively and criteria are given for minimal recasting in the quasi-polynomial
form.

2.3. Quasi-Monomial Transformation

Let us consider the quasi-polynomial system (2.9) and a transformation
of the form

yi 5 &
n

j51
xCik

j (i 5 1, . . . , n) (2.20)

where C is a non-singular matrix. The transformations of the form (2.20) are
called quasi-monomial transformations (QMTs) and have been studied by
many authors in different contexts [3–6]. The inverse of the QMT in (2.20)
is also a QMT given by the inverse matrix of C as

xi 5 &
n

j51
yC21

ik
j (i 5 1, . . . , n) (2.21)

The most important property of QMTs may be synthesized in the follow-
ing proposition:

Proposition 2.2. Let us consider a QMT given by (2.20); the QP-system
(2.9) is transformed into another QP-system given by

ẏi 5 yi o
m

j51
A8ij &

n

k51
yB8

jk
k (2.22)

with

A8 5 C21A, B8 5 BC (2.23)

This proposition asserts that, for nonlinear ordinary differential equa-
tions, the representation (2.9) is covariant under QMTs. It is easy to see that
the matrix M 5 B8A8 5 BA is invariant under QMTs.

Let the rank of the matrix B in (2.9) be p. Since rank(B) 5 p # n, m,
there are p linearly independent row or column vectors in the matrix B. Let
us consider N1, . . . , Nn2p as a column vector basis for the kernel of B. We
can find p column vectors L1, . . . , Lp such that L1, . . . , Lp , N1, . . . , Nn2p

are linearly independent. Thus we define the invertible matrix C as
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C 5 (L1 . . . Lp N1 . . . Nn2p), N1, . . . , Nn2p P kernel(B) (2.24)

The invertible matrix C defines a QMT of the form (2.20). The system (2.9)
is transformed into a system (2.22) with the new matrices A8 and B8 as in
(2.23). The matrix B8 is

B8 5 BC 5 (BC1 . . . BCn)

5 (BL1 . . . BLp BN1 . . . BNn2p)

5 (B18 . . . B18 0 . . .0)

Finally, one has
B811 ??? B81p 0 ??? 0
??? ??? ???

???
???

??? (2.25)B8 5 1 2B8m1 ??? B8mp 0 ??? 0

As a consequence, the system (2.22) is decoupled as follows:

ẏ1 5 y1 o
m

j51
A81j &

p

k51
yB8

jk
k

:

ẏp 5 yp o
m

j51
A8pj &

p

k51
yB8

jk
k

- - - - - - - - - - - - - - - - - - - - -

ẏp11 5 yp11 o
m

j51
A8p11, j &

p

k51
yB8

jk
k

:

ẏn 5 yn o
m

j51
A8nj &

p

k51
yB8

jk
k (2.26)

Recall that p # m and rank(B) 5 p; this result, obtained by Brenig and
Goriely [4], permits one to conclude that in the study of quasi-polynomial
systems it is only necessary to consider the QP-systems (2.9) with m $ n
and rank(B) 5 n.

2.4. Lotka–Volterra Systems

It is known [3–6] that any QP-system (2.9) is related to a quadratic
homogeneous Lotka–Volterra system (LV system). A first step in establishing
this connection consists in embedding the system (2.9) into an appropriate
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manifold. By reasoning as in the previous section and considering m $ n
and rank(B) 5 n, we introduce m 2 n variables xn11, xn12, . . . , xm and obtain
a new system defined on Rm:

ẋi 5 xi o
m

j51
Aij &

n

k51
xBjk

k (i 5 1, . . . , n)

ẋp 5 0 ( p 5 n 1 1, . . . , m) (2.27)

with initial conditions xp(0) 5 0. There is actually no dynamics for the new
variables xn11, xn12, . . . , xm. We recast the system (2.27) as

ẋi 5 xi o
m

j51
!ij &

m

k51
x@jk

k (i 5 1, . . . , m) (2.28)

where

 A11 ??? A1m 
B11 ??? B1n b11 ???b1r    ???

???
??? ???

???
???

???
???

???    An1 ??? Anm ! 5 , @ 5  ???
???

???  ???
???

??? 
0 ??? 0    ???

???
???

???
???

??? ???
???

???    Bm1 ??? Bmn bm1 ???bmr 0 ??? 0
(2.29)

where ! and @ are m 3 m square matrices and r 5 m 2 n. It is clear that
there exist rm free parameters bij in the matrix @. Since rank(B) 5 n, one
can always choose bij such that det(@) Þ 0, and define a QMT given by

yj 5 &
m

k51
x@21

jk
k ( j 5 1, . . . , m) (2.30)

Proposition 2.2 allows one to conclude that the dynamics obeyed by the
variables yj are governed by

ẏj 5 yj o
m

k51
Mjk yj (2.31)

with M 5 @! 5 BA. This system is the so-called quadratic homogeneous
Lotka–Volterra system [15] and describes the dynamics of the quasi-monomi-
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als appearing in Eq. (2.9), which are in this context the basic variables for
the system’s dynamics. The reasoning in the above paragraph permits us
to assert:

Proposition 2.3. There exist an embedding and a QMT which transform
any QP-system (2.9), determined by the matrices A and B, into a homogeneous
Lotka–Volterra system (2.31) defined by the matrix M 5 BA.

Examples. As an example, we consider the quasi-polynomial representa-
tion of the well-known Lorenz system

ẋ1 5 s(x2 2 x1)

ẋ2 5 rx1 2 x2 2 x1x3

ẋ3 5 2bx3 1 x1x2 (2.32)

The latter may be recast in the form (2.9) with the quasi-monomials

y1 5 x1
0x2

0x3
0, y2 5 x21

1 x2
1x3

0, y3 5 x1
1x21

2 x3
0 (2.33)

y4 5 x1
1x21

2 x3
1, y5 5 x1

1x2
1x21

3

The matrices A and B are

A 5 1
2s s 0 0 0
21 0 r 21 0
2b 0 0 0 12 (2.34)

B 5 1
0 0 0

21 1 0
1 21 0
1 21 1
1 1 21

2 (2.35)

and the M matrix of the corresponding Lotka–Volterra system (2.31) is
given by

M 5 3
0 0 0 0 0

s 2 1 2s r 21 0
1 2 s s 2r 1 0

1 2 s 2 b s 2r 1 1
b 2 1 2 s s r 21 21

4 (2.36)

The dimension of M is given by the number of quasi-monomials in (2.32).
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As a second example, let us consider the forced oscillator system given
by Eq. (2.13) and the matrices A and B defined in (2.15); its associated LV
system is given by the matrix M 5 BA, which we write explicitly as

M 5 1
0 0 0 0 0 0 0 0
a 21 b g d % 0 0
0 2 0 0 0 0 0 0

2a 1 2b 2g 2d 2% 0 0
2a 3 2b 2g 2d 2% 0 0
2a 0 2b 2g 2d 2% 21 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 21 21

2 (2.37)

The Lotka–Volterra matrix M corresponding to the semiconductor model
(2.18) with the matrices B and A in (2.19) is

M 5 1
2g c 0 0 0 0

g 2c c 2k 0 0
2g 22c 0 0 0 0
0 0 0 0 2mcq mqk

2g 22c c 2k 2cq qk
g 2c c 2k 2(m 1 1)cq (m 1 1)qk2 (2.38)

2.5. Differential Operators and Invariant Surfaces

In this part, we are essentially interested in the study of invariant surfaces
of the quasi-polynomial dynamical systems (2.9). This area constitutes an
excellent illustration of the powerful algebraic tools that can be introduced
in nonlinear dynamics through the quasi-monomial approach. The results
below are detailed in refs. 10 and 11.

Definition 2.1 (Invariant Surfaces). Let us consider the flow X(x0, t) of
the QP-system (2.9). A surfaces S , Rn is an invariant surface of the dynamical
system (2.9) if

∀x0 P S ⇒ X(x0, t) P S ∀t

Recall that the flow X(x0, t) is the solution of the system (2.9) with initial
condition x0, i.e., X(x0, 0) 5 x0.

To study the invariant surfaces, it is interesting to associate to a QP-
system (2.9) the differential operator
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d(A,B) 5 o
n

i51
(Ax B)i xi



xi
(2.39)

where

(Ax B)i 5 o
m

j51
Aij &

n

k51
x Bjk

k

In fact, if we consider the set of differentiable functions defined as

RnR 5 { f : Rn → R. f is differentiable} (2.40)

then the operator d(A,B) is a map from RnR to RnR. The embedding (2.27)
maps the invariant surface of the QP-system (2.9) into another invariant
surface of the QP-system (2.28). Moreover, a QMT transforms invariant
surfaces into invariant surfaces. Thus, in order to study the invariant surfaces,
it is only necessary to examine the invariant surfaces of the differential
operators which belong to the set

Q Der(x) 5 {d(A,B).A, B are square m 3 m matrices, det(B) Þ 0} (2.41)

When A 5 M and B 5 I we have a homogeneous Lotka–Volterra differential
operator given by

dM 5 o
m

i51
(My)i yi



yi
(2.42)

which corresponds to the system of ordinary differential equations (2.31).
The study of invariant surfaces gives important information on the topology
of the orbits representing the solutions in the phase space of the system.

2.6. Quasi-Polynomial Invariants

Let us consider a quasi-polynomial function on Rn given by

F 5 o
N

i51
Fi &

n

k51
xCik

k (2.43)

where Cik P R. The QMT in (2.20) transforms F into

F 5 o
N

i51
Fi &

n

k51
y[C@21]ik

k (2.44)

Hence, we can conclude that F is also a quasi-polynomial function in the
new variable yi. We summarize this property in the following proposition:

Proposition 2.4. The QMT (2.20) transforms a quasi-polynomial function
(2.43) into another quasi-polynomial function given by (2.44) with the same
number of quasi-monomial terms.
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Now, if we consider a QMT, we conclude that

dM(F ) 5 0 ⇔ d(A,B)(F ) 5 0 (2.45)

Proposition 2.4 and the relation (2.45) permit one to assert that, in order to
study the class of quasi-polynomial invariants (QP-invariants), it is only
necessary to analyze the invariants of the LV system. Therefore, in the rest
of this section we study the QP-invariants of the LV system.

Let us consider a QP-invariant of the form

F 5 o
N

i51
Fi ybi (2.46)

with ybi 5 Pm
k51 ybik

k and bi 5 [bi1, . . . , bim]; the function F satisfies the
equation

dM(F( y)) 5 0 (2.47)

One obtains

o
N

i51
Fi ybi o

m

j51
(bi M )jyj 5 0

o
N

i51
o
m

j51
Fi[bi M ]j ybi1ej 5 0 (2.48)

where [bi M ]j 5 (m
k51 bik Mkj and ej is a unit vector with the jth component

equal to unity and with the remaining components vanishing.
Let us consider two monomials ybi and ybj in the set S 5 {yb1, . . . ,

ybN}. They are said to be connected (ybi } ybj) if bi 2 bj P Z m, where

Z m 5 {(zi , . . . , zm).zi P Z}

The connection } is an equivalence relation on S; then the set S is decomposed
into the disjoint equivalence classes of this relation, and the number of
equivalence classes in S is different from N. We denote the different equiva-
lence classes in this set by [yai], where i 5 1, . . . , r # N and ai 5 bqi with
qi P {1, 2, . . . , N} and qi Þ qj for i Þ j. We can rewrite F as

F 5 F(1) 1 F(2) 1 . . . 1 F(r) (2.49)

where F(i) is a quasi-polynomial with all its monomials in the same equivalence
class [yai]. We know that this set of equivalence class is given by

[yai] 5 {yai1hik .k 5 1, . . . , Ni , hik P Z m} (2.50)

where Ni is the number of elements of S equivalent to yai. We can state the
following proposition:
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Proposition 2.5. Let us consider the QP-invariant F (2.49); then the F(i)

are also QP-invariants.

Proof. By performing the differentiation dM (F ) 5 0, one obtains

dM (F(1)) 1 . . . 1 dM (F(r)) 5 0

f(1) 1 . . . 1 f(r) 5 0

where f(i) 5 dM (F(i)). By using (2.48) and (2.50) one can see that all the
quasi-monomials in f(i) are of the form yai1hik1ep ( p 5 1, . . . , m). This implies
that all the monomials in f(i) are in the equivalence class [yai]. Now, for i Þ
j ([yai] Þ [yaj]), one can see that every quasi-monomial in f(i) is different
from every quasi-monomial in f( j), or otherwise one would have a quasi-
monomial such that yai1hip1er 5 yaj1hjq1es. Thus, we have (ai 2 aj) P Z m

and consequently yai } yaj and [yai] 5 [yaj] for i Þ j. Finally, since all the
monomials in f(i) and f( j) (i Þ j ) are different, we can conclude that f(i) and
f( j) are linearly independent. This implies that f(i) 5 dM (F(i)) 5 0. n

The importance of this result can be understood if one rewrites F(i) by
using (2.50),

F(i) 5 yai o
Ni

k51
Fik yhik (hik P Z m) (2.51)

We factorize (2.51) by the highest common multiple yqi for the set of quasi-
monomials yhik to obtain

F(i) 5 y(ai2qi) o
Ni

k51
Fik y(hik1qi) (2.52)

We have actually proven that F(i) 5 yui3i (y), where 3i (y) is a polynomial
function and ui P Rm. Finally, one can conclude by virtue of Proposition 2.5
that a QP-invariant (2.46) can be decomposed in the form

F( y) 5 o
r

i51
yui3i (y) (2.53)

where 3i (y) is a homogeneous polynomial function. At this point we remem-
ber that if the number Ni of monomials in the equivalence class [yai] is one,
then F(i) is a quasi-monomial invariant (QM-invariant). If F(i) has at least
two quasi-monomials, then 3i (y) is a nonconstant polynomial. The QM-
invariants have been exhaustively studied by Brenig and Goriely [4, 5] and
Gouzé [6].

The relation dM ( yui3i (y)) 5 0 yields
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3idM ( yui) 1 yuidM (3i) 5 0

yui [3i (m
j51 (ui M )jyj 1 dM (3i)] 5 0 (2.54)

and finally

dM (3i) 5 12o
m

j51
(ui M )jyj23i (2.55)

The polynomial 3 which satisfies dM (3) 5 l3, where l 5 (m
j51 li yi is a

linear function, is called a semi-invariant or Darboux polynomial of the
derivative dM. In this work, l is called the eigenvalue of the semi-invariant.
The following properties about semi-invariants of homogeneous derivatives
are known in the literature [18]:

Proposition 2.6. Let us consider a semi-invariant 3 and its respective
eigenvalue l. 3 can be written as 3 5 Pk 3rk

k (rk P N), factorized in its
irreducible factors 3k. Thus 3k is a semi-invariant with eigenvalue lk and
l 5 (k rklk.

Proposition 2.7. Let us suppose that a semi-invariant 3 with eigenvalue
l is written as 3 5 31 1 . . . 1 3s , where 3i is a homogeneous polynomial
with degree ni and ni Þ nj for i Þ j. Then 3i is a semi-invariant with
eigenvalue l.

To conclude this section, note that, upon use of (2.53), (2.55), and
Propositions 2.6 and 2.7, we can state the most important result of this section:

Proposition 2.8 (Decomposition Theorem). Any QP-invariant F given
by (2.46) can be decomposed in the form

F( y) 5 o
r

i51
yui3i (y) (2.56)

where yui3i (y) is a QP-invariant, 3i (y) is a homogeneous semi-invariant
with eigenvalue given by (2.55), and 3i (y) can be decomposed in irreducible
homogeneous semi-invariants.

2.7. The Computational Algorithm and Its Applications

Let us consider a class of invariants of the form

F 5 &
m

i51
yai

i 3( yi , . . . , ym) (2.57)

where ai are real numbers and 3( y) is a polynomial function. The equation
for an invariant is
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K̇ 5 o
m

j51

K
yi

ẏj 5 0 (2.58)

The use of (2.57) and of the LV form in (2.58) yields

&
m

i51
yai

i (3̇ 2 l3) 5 0 (2.59)

where l 5 2(m
j51 (aM )jUj and (aM )j 5 (m

k51 ak Mkj. The condition (2.59)
is equivalent to 3̇ 5 l3. Thus, 3 is a semi-invariant.

We define the set of linear functions from Rm to R as

L[y] 5 H f : Rm → R. f 5 o
m

j51
fjyj , y P RmJ (2.60)

and the set of semi-invariants associated to the differentiation dM

SI[y] 5 { f : Rm → R. f is semi-invariant of dM} (2.61)

Let us consider the map M: Rm → L[y] which associates a vector a P Rn

to a linear function (m
i51 (aM )i yi, and the map L: SI[y] → L[y] associating

to any 3 P SI[y] such that 3̇ 5 l3, its eigenvalue l, i.e., L(3) 5 l. With
these definitions, we conclude that a function of the type (2.57) is an invariant
of the system if two conditions are satisfied:

(a) There is a semi-invariant for the system.
(b) Image(M) ù Image(L) Þ 0⁄ .

This method and its application are developed in refs. 10 and 11; a
computer package with the implementation of this method is described in
ref. 12.

3. FLRW COSMOLOGY WITH A SELF-INTERACTING
SCALAR FIELD

In this section we present the Einstein equations for a spatially flat
FLRW cosmological model with a self-interacting scalar field conformally
coupled to gravity. The action for the model is

S 5
1
2 # d 4x !2g12R[g]

k
1 gmncmcn 2 m2c2 1

Vc4

2

1
Rc2

6
1 18L2 (3.1)

where cm [ c/xm, L is the cosmological constant (rescaled for economy
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of notation), k [ 8pGN (where GN is Newton’s constant), and m is the scalar
field mass. Notice the nonminimal (conformal) coupling of the field c to the
scalar curvature R given by the term Rc2/6. Physical reasons for the introduc-
tion of this term are discussed in refs. 19 and 20. By using the FLRW metric
with flat spatial sections

ds2 5 dt2 2 a2(t)(dx2 1 dy2 1 dz2) (3.2)

we obtain the Einstein equations derived from the variation of the action (3.1),

ctt 1 3Hct 1 m2c 2 Vc3 2
Rc
6

5 0 (3.3)

R 5 26(Ht 1 2H 2) 5
36v
k

2 k(s 2 3p) (3.4)

3H 2 1
9v
k

5 ks (3.5)

where v [ k2L, the Hubble constant is defined by

H 5 at /a (3.6)

and the energy density s and pressure p are, respectively,

s 5 1–2 [c2
t 1 H 2c2 1 Ht(c2) 1 m2c2 2 1–2 Vc4] (3.7)

p 5 1–6 [c2
t 1 H 2c2 1 Ht(c2) 2 m2c2 2 1–2 Vc4] (3.8)

In refs. 1 and 2 it is shown that Eqs. (3.3)–(3.5) are equivalent to the two-
dimensional system

ct 5 2Hc 6
1

2k
!G(H,c) (3.9)

Ht 5 2
6v
k

2 2H 2 1 ac2 (3.10)

where a [ km2/6 and

G(H, c) [ 72v 1 24kH 2 2 24akc2 1 2k2Vc4 (3.11)

The dimensional reduction of the equations of motion yields the no-chaos
theorem referred to in Section 1.

The system (3.3)–(3.5) can be rewritten as a Hamiltonian system by
employing the rescaled variables
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f [ !6
k

a (3.12)

C [ !k
6

fc (3.13)

and conformal time t defined by

dt 5 a dt (3.14)

instead of proper time t. The rescaled variables obey the equations

Ctt 5 2aCf2 1 VC3 (3.15)

ftt 5 aC2f 2 vf3 (3.16)

which can also be derived from the Hamiltonian

E [
C2

t

2
2

f2
t

2
1

a
2

C2f2 2
V
4

F4 2
v
4

f4 (3.17)

together with the energy constraint

E 5 0 (3.18)

The advantage of using the form (3.15) and (3.16) of the Einstein–Klein–
Gordon equations is that the latter allows one to use formal results known
for Hamiltonian systems. In particular, for a system with two degrees of
freedom the existence of a second constant of motion (invariant) besides the
energy ensures integrability of the system, in the sense that it can be com-
pletely reduced to an action–angle representation such that the system is
trivially solved by direct integration (even though the coordinate transforma-
tion is usually not easy to obtain).

4. INTEGRABLE CASES AND EXACT SOLUTIONS

The purpose of this section is to enumerate the integrable cases admitting
QP-invariants of Eqs. (3.15) and (3.16) and to obtain explicit solutions for
these cases. As explained in the previous section, integrability is guaranteed
if a single constant of motion (in addition to the Hamiltonian) is known. The
determination of analytical constants of motion of a given Hamiltonian system
is usually complicated and, in most cases, they only exist for a restricted
range of values of the parameters in the equations. These values can be
determined by using the Painlevé analysis [16, 17, 21].

The analysis was performed in ref. 17 for a general class of systems of
which the Hamiltonian (3.17) is a particular case; the results were recovered
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in our approach. The values of a, v, and V for which the system is integrable,
and the corresponding integrals of motion, were obtained (see Table I).

The system (3.15) and (3.16) can be reduced to the first-order system

dC/dt 5 Ct

dCt /dt 5 2aCf2 1 VC3

(4.1)
df/dt 5 ft

dft /dt 5 aC2f 2 vf3

In order to make progress beyond the work of refs. 17 and 21, we attempted
to integrate completely Eqs. (4.1). To obtain the solutions corresponding to
the integrable cases, one must obtain an additional invariant. Note that if one
knows three constants of motion Ci (C, f, Ct , ft) (i 5 1, 2, 3), then one
can write three variables as functions of the fourth one.

Let us assume that Ct , f, and ft only depend on C; then Eq. (4.1)
yields Ct 5 F(C) and, if F Þ 0, the solution is reduced to a quadrature,

t 2 t0 5 #
C(t)

C(t0)

dC
F(C)

(4.2)

The invariant I in Table I is then used to eliminate one of the variables C,
f, Ct , or ft in (4.1). Using Eqs. (3.7) and (3.8), we compute the energy
density s(t), the pressure p(t), and the equation of state p 5 p(s).

After elimination of one variable in terms of I in Eq. (4.1), the resulting
three-dimensional system depends on the value of I, which is now a new
free parameter in the equations. We looked for a third invariant J in the set
of QP-functions by using the approach described in Section 2, and we were
able to obtain a positive result only for I 5 0, with the corresponding explicit
solutions. The third invariant J obtained in these cases is presented in Table

Table I. Integrable Cases of Eq. (4.1) and the Associated Constants of Motion

Parameters Invariant I

V 5 v 5 a/3 aCf(f2 2 C2)/3 1 Ctft

V 5 v 5 a Ctf 2 ftC
V 5 8a/3, v 5 a/6 aCf4 2 6Cf2

t 2 2aC3f2 1 6fCtft

V 5 a/6, v 5 8a/3 6CCtf 1 2aC2f3 2 6C2
t f 2 aC4f

V 5 8a/3, v 5 a/3 a2C4f4 1 12aCf3Ctft 1 9f4
t 2 18aC2f2f2

t

1 a2f8/4 2 3af4C2
t 2 a2C2f6

V 5 a/3, v 5 8a/3 a2C4f4 2 12aC3fCtft 1 9C4
t 2 3aC4C2

t

1 18aC2f2C2
t 1 a2C8/4 1 3aC4f2

t 2
a2f2C6
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Table II. Third Invariant J for the Integrable Cases with I 5 0

Parameters Invariant J

V 5 v 5 a/3 3C2
t /f2 1 2aC2

V 5 v 5 a C/f
V 5 8a/3, v 5 a/6 C(2C2 2 f2)/f3ft

V 5 a/6, v 5 8a/3 f(2f2 2 C2)/C3Ct

V 5 8a/3, v 5 a/3 4aC4 2 4aC2f2 1 aC4 2 3C2
t

3 (C(4aC4 2 2aC2F2 2 3C2
t ))21

V 5 a/3, v 5 8a/3 4af4 2 4aC2f2 1 aC4 2 3f2
t

3 (f(4af4 2 2aC2F2 2 3f2
t ))21

II and it is a nonpolynomial function. The peculiarity of the value I 5 0 can
be appreciated if one uses the variables H, c, and f and eliminates ċ using
the energy constraint (3.5). In these variables, all the invariants assume a
special form reported in Table III; they all factorize as

I 5 fn^(H, c) (4.3)

and since f Þ 0 it must be that ^(H, c) 5 0 for I 5 0. This relation can
then be used to eliminate H or c from Eq. (3.9) or (3.10), and the scale
factor is determined by integrating Eq. (3.6).

Whether one integrates the equations in the rescaled variables C and f
by using the invariants E 5 0, I 5 0, and J, or one does it in the variables
H and c using I 5 0 as given in Table III, is only a matter of convenience
and simplicity, since the results obtained in both ways coincide. In each case
a judicious choice leads to a huge simplification in the amount of calculations
needed to obtain the final expressions.

Table III. Same as Table I, But Using the Variables H, c, and f

Parameters Invariant I

V 5 v 5 a/3 2(!6k/216)f4(2akc3 2 12ac
2 H!216a 1 216kH 2 2 216akc2 1 6ak2c4)

V 5 v 5 a 2(f3/12)(2kHc 2 !1728a 1 216kH 2 2 216akc2 1 3ak2c4)
V 5 8a/3, v 5 a/6 2(!6k/18)f5(3kcH 2 2 3ac 1 akc3

2 H!27a 2 54akc2 1 12ak2c4 1 54kH 2)
V 5 a/6, v 5 8a/3 2(f5/72)(576a 2 96akc2 1 72kH 2 1 3ak2c4

2 2kcH!1728a 1 216kH 2 2 216akc2 1 3ak2c4)
V 5 8a/3, v 5 a/3 (f8/36)(9k2H 4 2 3a2k2c4 2 18k2aH 2c2 2 9a2 1 12ka2c2

1 4kaHc!54a 1 54kH 2 2 54kac2 1 12k2ac4)
V 5 a/3, v 5 8a/3 (f8/216)(54k2H 4 2 48k2a2c4 1 3k3aH2c4

1 864kaH 2 1 2a2k3c6 1 3456a2

2 2k2aHc3!216kH 2 2 216kac2 1 6k2ac4 1 1728a)
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We note that in this approach we make no assumption on the equation
of state governing the field c, which is obtained in a self-consistent way
from the solutions. As discussed in a forthcoming publication, not every type
of equation of state is allowed in this model and all the linear equations of
state allowed can be obtained.

Before presenting the analytic solutions it is worth noting that since the
original system is Hamiltonian and therefore reversible, all the solutions have
a corresponding time-reversed solution. This means that if (c(t), a(t), H(t))
is a solution of our system, then (c(2t), a(2t),2H(2t)) is also a solution
of the same system. For brevity, only one of the possibilities (when there
are multiple ones) is presented. In addition, the initial conditions are chosen,
without loss of generality, in such a way that the expressions for the solutions
are simplified. A different choice of initial conditions is equivalent to a shift
of the origin of time.

We proceed to present all the solutions obtained for the six integrable
cases of our system:

Case 1. v 5 a/6, V 5 8a/3.
By using the invariant I in Table III and setting I 5 0 one obtains

3kcH 2 2 3ac 1 akc3

2 !54kH 2 2 54akc2 1 12ak2c4 1 27aH 5 0 (4.4)

and the solution for c is

c 5 6!3
a

H (4.5)

or

c 5 6! 3
2ak

[2a 1 kH 2 6 H!k2H 2 2 4ak]1/2 (4.6)

The two choices of sign in Eq. (4.6) are independent of each other, i.e., there
are four different branches. Each branch must be separately checked to avoid
spurious possibilities. In fact, only the positive sign in the second symbol 6
of Eq. (4.6) leads to a valid solution, while both signs are valid for the first
symbol 6. In each case below different branches occur and must be similarly
checked. Equation (4.6) can be substituted into Eq. (3.10) and after some
algebra the following solution is obtained:

c(t) 5 6!6
k

1

cos(!2a/kt)
(4.7)

a(t) 5 a0
!.sin(!2a/kt).
.cos(!2a/kt).

(4.8)
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where here and in the following, a0 is an arbitrary integration constant. The
Hubble function follows from Eqs. (3.6) and (4.8). Plots of c(t), f(t), and
H(t) are shown in Fig. 1, in which only the positive sign for the scalar field
(4.7) is shown. The same choice of sign applies to the rest of the figures.

The energy density and pressure are obtained from Eqs. (3.7) and (3.8),

s(t) 5
3a
2k2

3v 2 4
v(v 2 1)

(4.9)

p(t) 5 2
a

2k2

21v 2 20
v(v 2 1)

(4.10)

with v(t) [ cos2(!2a/kt); the equation of state is

p 5 g(t)s (4.11)

where

g(t) 5 2
21v 2 20
3(3v 2 4)

(4.12)

Equation (4.11) is linear and, for t 5 0, it reduces to the radiation equation
of state p 5 s/3.

The other possibility associated with Eq. (4.5) leads to the solution

c(t) 5 6
3

!k
tanh1!a

k
t2 (4.13)

a(t) 5 a0 sech1!a
k

t2 (4.14)

s(t) 5
3a
k2 tanh21!a

k
t2 1

3a
2k2 (4.15)

and the equation of state is

Fig. 1. c, f, and H as functions of the proper time t, as given by Eqs. (4.7) and (4.8) for v 5
a/6 and V 5 8a/3.
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Fig. 2. c, f, and H as functions of the proper time t, as given by Eqs. (4.13) and (4.14) for
v 5 a/6 and V 5 8a/3.

p 5 2
5
3

s 1
3a
k2 (4.16)

The corresponding plots are given in Fig. 2. This solution begins as an
expanding de Sitter universe with p 5 2s as t → 2`, goes through a
radiation phase with p 5 s/3 at t 5 0, and then evolves into a contracting
de Sitter space as t → 1`.

Case 2. v 5 8a/3, V 5 a/6.
By proceeding analogously to the previous case, one obtains the solutions

c(t) 5 6!(12/k)[1 1 cos(!8a/kt)]21/2 (4.17)

a(t) 5 a0!.sin (!8a/kt).!1 1 .cos(!8a/kt). (4.18)

s(t) 5
6a
k2

4v 2 5
v2 2 1

(4.19)

p(t) 5 2
2a
k2

8v 2 7
v2 2 1

(4.20)

with v(t) [ cos(!8a/kt). The equation of state is given by Eq. (4.11) with

g(t) 5 2
8v 2 7

3(4v 2 5)
(4.21)

Again, p → s/3 as t → 0; plots are given in Fig. 3.

Fig. 3. c, f, and H as functions of proper time t, as given by Eqs. (4.17) and (4.18) for v 5
8a/3 and V 5 a/6.
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Case 3. v 5 a/3, V 5 8a/3.
After cumbersome computations, two solutions are obtained; the first

one is

H(t) 5 ! a
5k

(u 1 1 1 8!u)
(u 2 1)

(4.22)

where u [ exp(22!5a/kt); the scalar field and the scale factor are

c(t) 5 6
1

!3ak
[3a 1 5kH 2 1 !3akH 2 1 k2H 4]1/2 (4.23)

and

a(t) 5 a0 expH 1
10 F16 tanh21(!u) 2 ln

(u 2 1)2

u GJ (4.24)

The corresponding plots appear in Fig. 4; this solution begins as a contracting
universe that evolves into a singular (a 5 0) de Sitter solution as t → 1`.
The time-reversed solution begins with a singularity as t → 2`, with constant
Hubble function.

The second solution is

c(t) 5 6!3
k

1

cos(!(a/k)t)
(4.25)

a(t) 5
a0

cos(!(a/k)t)
(4.26)

s(t) 5
3a
k2

1

cos2(!(a/k)t)
(4.27)

with the equation of state

Fig. 4. c, f, and H as functions of the proper time t, as given by Eqs. (4.23) and (4.24) for
v 5 a/3 and V 5 8a/3.
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Fig. 5. c, f, and H as functions of the proper time t, as given by Eqs. (4.25) and (4.26) for
v 5 a/3 and V 5 8a/3.

p 5 2
5
3

s (4.28)

Plots are presented in Fig. 5.

Case 4. v 5 8a/3, V 5 a/3.
In this case the only solution obtained is

c(t) 5 62!3
k

1

cos(!(2a/k)t)
(4.29)

a(t) 5 a0 cos2(!(2a/k)t) (4.30)

s(t) 5
24a
k2

1

cos2(!(2a/k)t)
(4.31)

and the equation of state is

p 5 2
2
3

s (4.32)

with plots presented in Fig. 6.

Case 5. v 5 V 5 a/3.
The solution is

Fig. 6. c, f, and H as functions of the proper time t, as given by Eqs. (4.29) and (4.30) for
v 5 8a/3 and V 5 a/3.
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c 5 6!6
k

tan1!a
k

t2 (4.33)

a(t) 5 a0 cos21!a
k

t2 (4.34)

s(t) 5
4a
3k2 tan21!a

k
t2 1

3a
k2 (4.35)

and the equation of state is

p 5 2
2
3

s 1
3a
k2 (4.36)

Plots corresponding to this solution are given in Fig. 7.

Case 6. v 5 V 5 a.
In this case all the solutions for I 5 0 are de Sitter universes, as discussed

in ref. 1, and correspond to degenerate fixed points of Eqs. (3.9) and (3.10).

5. CONCLUDING REMARKS

Among the above solutions, those represented in Figs. 2 and 4 are worth
special attention. The former corresponds to a heteroclinic orbit (i.e., an orbit
connecting two fixed points of the differential system) in the phase space,
with a linear equation of state; it begins from an expanding (H . 0) and
evolves to a contracting (H , 0) de Sitter universe. It is easily seen from
Eqs. (4.15) and (4.16) that at the time t 5 0 one has the radiation equation
of state p(0) 5 s(0)/3. Furthermore, as t → 6` one obtains the de Sitter
equation of state p(6`) 1 s(6`) 5 0, with s(6`) 5 9a/2k2.

The second solution (Fig. 4) describes an evolution starting from a
singularity (H 5 2`) at t 5 0 and evolving to a contracting de Sitter
spacetime. We stress that, in contrast with the heteroclinic orbit presented in

Fig. 7. c, f, and H as functions of the proper time t, as given by Eqs. (4.33) and (4.34) for
v 5 V 5 a/3.
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ref. 2, which represents a so-called critical solution, the solution (4.13) and
(4.14) is only valid in the presence of a nonvanishing cosmological constant
v (or L). Another peculiarity is the special character of the linear equation
of state obtained for certain solutions for which the pressure is not an affine
function of the energy density, which yields as asymptotic cases the more
familiar de Sitter and radiative equations of state. We refer the reader to refs.
1 and 2 for details of this cosmological model.
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